
Deep Learning for Projector Warp Correction

Shoham Weiss
University of North Texas
shohamweiss@gmail.com

Abstract

In this paper, we present a solution for training deep
learning models to compensate for warps in projected im-
ages. We create a Unity environment that simulates a pro-
jector system and expose it as a python library. This allows
models written in python to project images onto a simulated
surface and see the resulting warped image. We also use
this environment to train a reinforcement learning model
to adjust the projected surface to correct for warps. Addi-
tionally, we propose a GAN-based supervised learning ap-
proach for training models to correct for projected warps.
With models trained using this environment, projectors can
be used to project onto any surface, enabling a range of
augmented reality applications.

Our implementation results are available on
GitHub: https://github.com/ShohamWeiss/
AIProjectorWarpCorrection.

1. Introduction
Projectors have traditionally required a flat white screen

to display images accurately, but recent advances in com-
puter vision and deep learning have made it possible to
dynamically adjust the projected image to compensate for
warps on non-flat surfaces. In this paper, we propose a deep
learning approach for the trained model to adjust the pro-
jected image in real-time based on the warped result.

The problem we are addressing is the lack of a dataset
for training deep-learning models to compensate for warps
in projected images. Additionally, training a model to ad-
just for warps requires the ability to project the model’s
output and compare it to the ground truth. To solve these
challenges, we developed a Unity environment and python
library that allows for the training of any computer vision
model written in python as the SDK allows for creating a
surface to project on, projecting an image, and extracting
the warped projected results from the environment.

Our thesis is that by creating a virtual environment for
training deep learning models to adjust for warps in pro-
jected images, we can overcome the challenges of collect-

ing real-world data and evaluating the performance of the
models. In the following sections, we will describe our ap-
proach in detail and present the results of our experiments.

2. Background

Our research was inspired by the work of Bingyao
Huang et al. in the work of correcting for warped projected
images [1]. In their paper, Huang et al. proposed an end-
to-end solution for solving the problems of geometric and
photometric disturbance of the projection surface together.
They designed a new type of network, called WarpingNet,
which uses a cascaded coarse-to-fine structure to learn how
to fix the sampling grid of the projected image. They also
designed another network, called CompenNeSt, which uses
a siamese architecture to understand how the projected im-
age changes when it hits the surface, and to use this infor-
mation to improve the image. By combining WarpingNet
and CompenNeSt, Huang et al. were able to train a sin-
gle network, called CompenNeSt++, to do both tasks at the
same time. In their work, Huang er. al use a physical pro-
jector environment to collect their data and run their eval-
uations of the model. This inspired our work of creating a
similar setup but as a virtual environment.

Our approach differs from the work of Huang et al. in
several key ways. First, we developed a Unity environment
and python library that allows for the creation of a virtual
projection environment for training deep learning models to
adjust for warps in projected images. This allows us to over-
come the challenges of collecting real-world data and eval-
uating the performance of the models. Second, we trained
a reinforcement learning model in the Unity environment to
learn to adjust the warped surface so that the projected im-
ages end up as flat images. This is a different approach than
the one used by Huang et al., which relied on pre-training
with synthetic data to reduce the number of training images
and training time.

https://github.com/ShohamWeiss/AIProjectorWarpCorrection
https://github.com/ShohamWeiss/AIProjectorWarpCorrection

3. Methods

3.1. Building the Virtual Projection Environment

The virtual projection environment used in this study is
built using the Unity game engine and a python library that
exposes the environment as a python API. This allows for
the creation of a virtual wall with a projector projecting an
image on it that can be used to train a deep-learning model
to adjust for warps in the projected images.

Figure 1. Unity projector environment front view

Figure 2. Unity projector environment from the angled view

The Unity environment consists of a wall made up of 9
blocks arranged in a 3x3 grid. The blocks are positioned
such that the wall is initially flat facing the camera. A pro-
jector and a camera are placed in front of the wall to project
images onto the wall’s surface and capture images of the
projected results.

Figure 3. Diagram showing the environment setup. The orange
block represents the camera, the grey block represents the projec-
tor, and the other colored blocks represent the blocks making up
the wall. Top: Environment setup with a flat wall. Bottom: Envi-
ronment setup with a randomly configured wall.

The user chooses an image to project onto the virtual
wall using the python API and can choose to set the wall
orientation in the x-axis (axis facing the camera) or set it to
randomly orient the wall. Then the user can take a snapshot
of the projected result.

Figure 4. Left: the original image of balloons to be projected.
Middle: Projected balloons on a flat wall. Right: Projected bal-
loons on the randomly positioned wall.

The python library provides functions for setting the im-
age to be projected, adjusting the position of the blocks in
the wall, and taking a snapshot of the projected image. Here
is an example of how the python library can be used to set
the image to be projected, set the wall and save a snapshot
of the projected result:

1 # Import the ProjectorEnvironment class from the
2 # aiprojector library
3 from ProjectorEnvironment import

ProjectorEnvironment↪→

4

5 # Create an environment
6 # this will use myImage.png as initial image
7 # to project
8 # it will create a folder with the name of the
9 # image and take a snapshot of the flat wall

10 # to get a 'label' image
11 env = ProjectorEnvironment("myImage.png")
12

13 # Set a new Image to project
14 # param new_class:
15 # true: new image creates a new folder and
16 # label snapshot in that folder (treated as a
17 # new class)
18 # false: adds the image to the current folder
19 # (treated as the same class)
20 env.NewImage(filepath, new_class=false)
21

22 # Create a new random wall to project image onto
23 env.NewRandomWall()
24

25 # Flatten Wall
26 env.FlattenWall()
27

28 # Set wall position to your requirements
29 wall = {
30 "bottomLeft": 0.0,
31 "bottomRight": 0.0,
32 "bottomMiddle": 0.0,
33 "middleLeft": 0.0,
34 "middleRight": 0.0,
35 "middleMiddle": 0.0,
36 "topLeft": 0.0,
37 "topRight": 0.0,
38 "topMiddle": 0.0
39 }
40 env.SetWall(wall)
41

42 # Save a snapshot of current projection on the
43 # wall
44 # saved into the folder of the original image
45 # as the folder name
46 env.Snapshot("snapShotName.png")
47

48 # Close the environment to free up memory
49 env.close()

The python library provides a NewImage() function,
which can be used to set a new picture to project. The
python library provides a newRandomWall() function,
which can be used to adjust the position of the blocks in
the wall to create a new surface with randomly positioned
blocks. Finally, a Snapshot() function, which can be used
to take a snapshot of the projected image. These can be run
in sequence to create training data. These can also be use-
ful for evaluating the performance of a deep-learning model
that has been trained to adjust for warps in the projected
image.

3.2. Training the Reinforcement Learning Model

The reinforcement learning model used in this study was
trained using Unity’s ML-Agents framework. This frame-
work allows for the training of intelligent agents in a simu-
lated environment using reinforcement learning algorithms.

The goal of the reinforcement learning model is to learn
to adjust the position of the blocks in the wall in order to
flatten the surface and correct for warps in the projected im-
age. At the start of each episode, the blocks are given a
random position in the x-axis. The model uses the resulting
warped image as input and makes decisions about how to
move the blocks in order to flatten the wall.

The specific configuration used for the reinforcement
learning model includes the following settings:

1 Trainer type: PPO (Proximal Policy Optimization)
2 Hyperparameters:
3 Batch size: 100
4 Buffer size: 200
5 Learning rate: 3.0e-4
6 Beta: 5.0e-2
7 Epsilon: 0.2
8 Lambd: 0.95
9 Number of epochs: 100

10 Learning rate schedule: linear
11 Beta schedule: linear
12 Epsilon schedule: linear
13 Network settings:
14 Normalization: disabled
15 Hidden units: 256
16 Number of layers: 4
17 Visual encoding type: simple
18 Reward signals:
19 Extrinsic:
20 Gamma: 0.99
21 Strength: 1.0
22 Maximum number of steps per episode: 300,000
23 Time horizon: 64
24 Summary frequency: 1,000

In this paper, we propose a training method for deep
learning models to correct for warps in projected images.
Our method uses a reinforcement learning approach, in
which the model is exposed to a series of episodes in which
it must adjust the position of blocks to flatten a simulated
wall and produce a corrected, unwarped projected image.
We evaluate the model’s performance based on its ability to
correctly flatten the wall and produce a corrected image.

We focus on two sub-scenarios for our training: placing
one block to flatten the wall, and placing two blocks to flat-
ten the wall. In the first scenario, we keep eight of the nine
blocks flat and randomly vary the position of one block. The
model is then given 300 steps (5 seconds) to place the block
so that it aligns with the rest of the wall, creating a flat im-
age. In the second scenario, we do the same but keep seven
blocks flat and move two.

The model takes in an image of size 84x84 as input.
For the front layers, we use a pre-trained CNN provided
by Unity’s mlagents library. The middle layers consist of
four fully-connected layers of size 256, and the final out-
put layer is size 3 for the one-block scenario. This output
layer represents the movement of the block, with each value
representing the movement in the forward, backward, or no
movement direction. This allows the model to learn to ad-
just the position of the block to correct for warps in the pro-
jected image. For the two-block scenario, the output layer
is size 6, with three movement options for each block.

We structured the reward to be the sum of the distance of
the blocks from their ”flat position”, the position all blocks
start at to make the image flat.

Reward = −
n∑

i=0

|blockpositioni − flatposition|

Overall, the use of Unity’s ML-Agents framework and
the specified configuration for the reinforcement learning
model enables the training of the model in the simulated en-
vironment. This allows for the collection of data and eval-
uation of the model’s performance in a controlled, virtual
setting.

3.3. Pix2Pix approach

The reinforcement learning approach to training a model
to correct for warps in projected images is not scalable be-
cause it is limited by the number of moves that can be
made in the environment. In the current implementation,
the model can only move a limited number of blocks to flat-
ten the wall, and adding more blocks would require expo-
nentially more training data and computational resources.
This makes it difficult to apply the reinforcement learning
approach to more complex scenarios with more blocks or
other factors that affect the projected image.

On the other hand, a pix2pix-based approach is more
scalable and adaptable, as it does not rely on a fixed number
of moves or a pre-defined network architecture. It can learn
from paired images and generate output images that are sim-
ilar to the target image, allowing it to adapt to different en-
vironments and settings. This makes it a more promising
approach for training a model to correct for warps in pro-
jected images.

A potential method for training a pix2pix model to cor-
rect for warps in projected images is as follows:

Figure 5. Steps to train a pix2pix model to correct for warped
projected images.

1. Project image on flat wall capture projected result as
label.

2. Set the orientation of the wall randomly and capture
projected result.

3. Pass the projected image through the generator to pro-
duce processed image.

4. Run the generator’s output through the projector and
save the resulting processed projected image.

5. Provide the discriminator with the label image and the
processed projected image.

6. Simultaneously train the discriminator to be able to
distinguish between the flat and non-flat images and
the generator to produce more convicing warp correc-
tions.

This approach leverages the pix2pix model’s ability to learn
from paired images and generate output images that are
similar to the target image. By providing the model with
a ground truth flat image and a projected image as input,
the generator can learn to produce output images that, once
projected, result in a flattened image. The discriminator can
then be trained to distinguish between the ground truth and
generated images, allowing the generator to improve its out-
put over time.

4. Results
For our results we focus on the reinforcement learning

model. There are two ways to evaluate the reinforcement
learning model’s performance, through metrics and visu-
ally. The metrics to evaluate the model are the cumulative
reward, the value loss, and the policy loss collected as the
model is training. We expect the cumulative reward to be
increasing, the polity loss to be decreasing, and the value
loss to increase and then decreasing during successful train-
ing sessions. Visually we expect to see the blocks moving

initially randomly, and over time seeing the agent become
more intentional with its placement of the blocks landing
them close to the rest of the blocks.

As seen in figure 6, both the 1 block and the 2 block sys-
tem seem to have improved the cumulative reward in the
first 15 thousand steps, then they decreased the cumulative
loss back down. This suggests that the models did not im-
prove in a significant way in the 50 thousand steps given.

Figure 6. Cumulative reward of the two models during training.

As seen in figures 7 and 8, although the cumulative sum
of the reward did not improve over the 50 thousand steps,
the variance in the reward did decrease and concentrated
more towards the high reward results. This suggests that
the models were learning to behave in a more coherent way
following better cumulative reward behaviors.

Figure 7. Cumulative reward histogram for the 1 block training
showing how often we get which reward during training (z-axis).

Figure 8. Cumulative reward histogram for the 2 blocks training
showing how often we get which reward during training (z-axis)..

In figures 9 and 10, we see the same trend as in figure
6. The models were decreasing the value loss in the first 15

thousand steps and then going back to increasing the loss.
Since for the policy loss we expect a slight increase then
slight decrease, the continuing increase follows the same
trend. The models appeared to have enough time to learn
some behavior to follow but not enough time to fully in-
crease their reward to their full potential.

Figure 9. The value loss of the 1 block and 2 blocks models during
training.

Figure 10. The policy loss of the 1 block and 2 blocks models
during training.

These metrics follow a seen behavior in the simulation
of the models. In the early episodes, the blocks move spo-
radically, a lot of time straight back or forward and away
from the rest of the wall. This behavior results in really low
cumulative rewards. The model needs to first learn to move
the block slightly to keep it close to the wall. This is ex-
actly what is seen in action, by the later episodes, and even
by step 15 thousand, the model no longer moves the block
very far away from the wall and keeps the block somewhat
close to the wanted position. Still the model does not al-
ways successfully align the block flat with the wall by step
50 thousand.

5. Discussion
In the discussion of our results, we focus on the perfor-

mance of the reinforcement learning models. We observed
that the models were able to learn to keep the blocks close
to the wall, but did not have enough training steps to learn
how to place the blocks perfectly flush with the wall. We
believe that increasing the number of training steps would
allow the models to learn this behavior. Additionally, we
propose modifying the reward function to use a negative

quadratic offset, which would incentivize the model to place
the blocks closer to the center (flush with the wall) for
higher rewards. The reward function could be expressed
as:

Reward =

n∑
i=0

−(blockpositioni − flatposition)2 + offset

where (blockposition - flatposition) is the distance of the
block from the center (flush with the wall) and offset is a
constant value that determines the range of the reward func-
tion.

Once the model is able to create semi-flush wall orien-
tations for two blocks, we propose increasing the number
of blocks until all nine blocks are oriented semi-well by the
model. We believe that training a discriminator on the re-
sulting projections could then be used to further train the re-
inforcement learning model. The discriminator can be used
to create a new reward function based on its ability to distin-
guish between the ground truth and generated images. This
new reward function can be used to train the reinforcement
learning model to produce even better results, potentially
achieving a perfectly flush wall.

Overall, we believe that focusing on developing a
pix2pix model using the python API of the virtual projec-
tor environment is a promising path forward. The pix2pix
model has the potential to be more scalable and adaptable
than the reinforcement learning approach, and we believe it
could be used to train a model to correct for warps in pro-
jected images effectively.

6. Conclusion
We successfully created a virtual projector environment

in the Unity game engine and trained reinforcement learn-
ing models on said environment. Furthermore, we exposed
the virtual environment as a python API that anyone can
make use of for training and evaluating other projector warp
correction models. We believe that a pix2pix approach
would be ideal to go further with this problem and believe
that once solved this challenge can have a big impact on the
field of augmented reality.

References
[1] Huang, B., Sun, T., Ling, H. (2021, Jan-

uary 7). End-to-end full projector compensation.
arXiv.org. Retrieved December 13, 2022, from
https://arxiv.org/abs/2008.00965v3 1

[2] Unity-Technologies. (n.d.). Unity-Technologies/ML-
Agents: The Unity Machine Learning Agents Toolkit
(ML-agents) is an open-source project that enables
games and simulations to serve as environments for

training intelligent agents using deep reinforcement
learning and imitation learning. GitHub. Retrieved
December 13, 2022, from https://github.com/Unity-
Technologies/ml-agents

[3] Pix2pix: Image-to-image translation with a
conditional Gan : Tensorflow Core. Tensor-
Flow. (n.d.). Retrieved February 26, 2022, from
https://www.tensorflow.org/tutorials/generative/pix2pix

	. Introduction
	. Background
	. Methods
	. Building the Virtual Projection Environment
	. Training the Reinforcement Learning Model
	. Pix2Pix approach

	. Results
	. Discussion
	. Conclusion

